静态熔融焊料的氧化根据液态金属氧化理论,熔融状态的金属表面会强烈的吸附氧,在高温状态下被吸附的氧分子将分解成氧原子,氧原子得到电子变成离子,然后再与金属离子结合形成金属氧化物.暴露在空气中的熔融金属液面瞬间即可完成整个氧化过程,当形成一层单分子氧化膜后,进一步的氧化反应则需要电子运动或离子传递的方式穿过氧化膜进行,静态熔融焊料的氧化速度逐渐减小;熔融的SnCu0.7比Snpb37合金氧化的要快.
毕林-彼德沃尔斯(Pilling Bedworth)理论表明:金属氧化膜是否致密完整是抗氧化的关键,而氧化膜是否致密完整主要取决于金属氧化后氧化物的体积要大于金属氧化前金属的体积;熔融金属的表面被致密而连续氧化膜覆盖,阻止氧原子向内或金属离子向外扩散,使氧化速度变慢.氧化膜的组成和结构不同,其膜的生长速度和生长方式也有所不同;熔融SnCu0.7和Snpb37合金从260℃以同等条件冷却凝固后,SnCu0.7的表面很粗糙,Snpb37的而表面较细腻.从这一角度反映了液态SnCu0.7合金氧化膜得致密完整度较Snpb37要差.
另外,不同温度下SnO2与PbO的标准生成自由能不同,前者生成自由能低,更容易产生,这也在一定程度上解析了为什麽无铅化以后氧化渣大量的增加.表一列出了氧化物的生成Gibbs自由能,可以看出SnO2比其他氧化物更易生成.通常静态熔融焊锡的氧化膜为SnO2和SnO的混合物. 氧化物按分配定律可部分溶解于熔融的液态焊料,同时由于溶差关系使金属氧化物向内部扩散,内部金属含氧逐步增多而使焊料质量变差,这在一定程度上可以解释为何经过高温提炼(或称还原)出来的合金金属比较容易氧化,且氧化渣较多;氧化膜的组成,结构不同,其膜的生常速度,生长方式和氧化物在熔融焊料中的分配系数将会有很大差异,而这又和焊料的组成密切相关.此外,氧化还和温度,气相中氧的分压,熔融焊料表面对氧的吸收和分解速度,表面原子和氧原子的化合能力,表面氧化膜的致密度,以及生成物的溶解,扩散能力等有关.
1.没有经常清理锡渣,使峰顶掉下来的含锡不能尽快进入炉中,而不是留在锡渣上面;加热不均匀,也会造成锡渣过多.
2.平时的清炉也是很关键的,长时间没有清炉,炉中的杂质含量偏高,也会造成锡渣过多的原因之一,还要定期清炉换锡,一般大约每半年换锡一次。
3.波峰炉的温度一般都控制得比较低,一般为 250℃±5℃(针对 63/37 的锡条来说),而这个温度是焊料在焊接过程中所要求的基本要达到的温度,温度偏低,以致锡不能达到一个很好的溶解,在使用之时就会造成锡渣过多的情况。
4.是波峰炉设备的问题: 波峰太高,焊料从峰顶掉下来的时候,温度降低偏差比较大,焊料混合着空气冲进锡炉中造成于氧化和半溶解现象,导致锡渣的产生。
5.锡条的纯度也有关系,波峰炉一般都要求纯度高的锡条,杂质多的锡条在焊接时会造成锡渣过多。
6.波峰炉里锡使用时间过久,锡本身的抗氧化能力在降低,造成氧化速度加快,从而影响到锡渣产生量增加。